top of page

Publications

2025

​​​​

     

     

(36) Molybdenum Catalyzed Acceptorless Dehydrogenative Approach for Quinoline Synthesis

 

 

         Using Amino Alcohol​.

 

            V. Atreya, A. Sil, D. Sil*, S. Chakraborty*, Org. Biomol. Chem. 2025, (Accepted manuscript)

                   

            DOI: 10.1039/D5OB01409C

     

 

 

 

 

 

 

(35) Pincer Chromium (II) Catalyzed Hydrogenation of CO2, and Bicarbonate to Formate

         T. Singh, S. Chakraborty* Dalton Trans., 2025, Accepted Manuscript, DOI: 10.1039/D5DT00070J

           

 

 

 

 

 

(34) Chromium Catalyzed Acceptorless Dehydrogenative (Cross)Coupling of Primary Amines

         to Secondary Imines.

         A. Anand; A. Regina, S. Jalwal, S. Prodhan, D. Sil*, M. Paranjothy*, S. Chakraborty*. Dalton Trans., 2025,54,

           6432-6442, DOI:10.1039/D4DT03460K.

 

 

 

​​​

​​

​​​​​      

(33) Chromium Catalyzed Transfer Hydrogenation of CO2 to Formate Using Isopropnol

               UnderAmbient Pressure.

               T. Singh, S. Chakraborty*. Catal. Sci. Technol. 2025, 15, 689-695.​ DOI: 10.1039/D4CY01329H

 

 

(32)  Terpenylation of Ketones and Secondary Alcohol Under Hydrogen Borrowing Manganese

          Catalysis.

           S. Jalwal, S. Das, S Chakraborty*. J. Org. Chem. 2025, 90, 1, 309–316. DOI: 10.1021/acs.joc.4c02260

​​​​​​​​​​​​​      

 

 

 

 

(31) Chromium Catalyzed Sustainable C-C and C-N Bond Formation: C-Alkylation and

         Friedländer Quinoline Synthesis Using Alcohols.

         V. Atreya, S. Jalwal, S. Chakraborty*Dalton Trans ., 2025, 54, 1212-1221. DOI: 10.1039/D4DT01481B

​​​​​​​​​​      

 

 

 

 

 

 

(30) Bench-Stable Low-Valent Chromium Catalysts for Hydrogenation of CO2, Bicarbonate,

         and Inorganic Carbonates  to Formate.

            T. Singh T, A. Gutal, A. Regina, A. Banerjee, M. Paranjothy*, S. Chakraborty*.ACS Catal. 2024, 14, 14958–14965.

 

​​​               

 

 

 

(29) Molybdenum Catalyzed Hydrogenation of Carbon dioxide, Bicarbonate, and Inorganic Carbonate Formate.

        T. Singh, S. Chakraborty*. Dalton Trans. 2024, 53, 10244-10249.

 

 

 

          ​​     

 

 

(28) NNN Manganese Complex Catalyzed α-Alkylation of Methyl ketones using Alcohols:

         An Experimental and Computational study.

         S. Jalwal, A. Regina, V. Atreya, M. Paranjothya*, S. Chakraborty*. Dalton Trans. 2024, 53, 3236-3243. 

 

       ​       

 

 

 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               

(27) Advances in Group VI Metals Catalysed Homogeneous Hydrogenation and dehydrogenation

 

         Reactions.​ T. Singh, V. Atreya, S. Jalwal, A. Anand, S. Chakraborty S*. Chem. Asian J.  2023, 18, e202300758.

​​                   

 

 

 

 

 

 

 

(26) Shock wave attenuation using sandwiched structures made up of polymer foams and shear

         thickening fluid.

          K. Singh, R. Raj, A.K. Rajagopal*, S. Jalwal, S. Chakraborty. J. Mech. Sci. Technol . 2023, 37, 1311-1316.

 

 

 

 

 

 

 

 

 

(25) Homogeneous First‐row Transition‐metal‐catalyzed Carbon Dioxide Hydrogenation to

         Formic Acid/Formate, and Methanol. (Invited Review)

            T. Singh, S. Jalwal, S. Chakraborty. Asian J. Org. Chem. 2022, e202200330 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(24) Base Metal Catalyzed (De)Hydrogenative Formylation and Methylation Reactions Utilizing

         Carbon Dioxide and Methanol as C1 Sources. (Invited Review)

            S. Jalwal, V. Atreya, T. Singh, S. Chakraborty. Tetrahedron Lett. 2021, 82, 153362.

2024

2023

2022

2021

Post. Doc. & Ph.D. ​

Screenshot 2025-04-13 at 3.52.16 AM.png

         (23) Kumar, A.; Janes, T.; Chakraborty, S.; Daw, P.; von Wolff, N.; Carmieli, R.; Diskin-Posner, Y.; Milstein, D.

                  C−C Bond Formation of Benzyl Alcohols and Alkynes Using a Catalytic Amount of KO t Bu: Unusual Regioselectivity

                  through a Radical Mechanism. Angew. Chem. Int. Ed. 2019, 58 , 3373–3377. 

         (22) Chakraborty, S.; Daw, P.; Ben David, Y.; Milstein, D. Manganese-Catalyzed α-Alkylation of Ketones, Esters, and

                  Amides Using Alcohols. ACS Catal. 2018, 8 , 10300–10305.​

         (21) Das, U. K.; Chakraborty, S.; Diskin-Posner, Y.; Milstein, D. Direct Conversion of Alcohols in to Alkenes by

                  Dehydrogenative Coupling with Hydrazine/Hydrazone Catalyzed by Manganese. Angew. Chem. Int. Ed.  2018, 130,

                  13632–13636. ​

         (20) Zou, Y.-Q.; Chakraborty, S.; Nerush, A.; Oren, D.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Highly Selective,

                  Efficient Deoxygenative Hydrogenation of Amides Catalyzed by a Manganese Pincer Complex via Metal–Ligand

                  Cooperation. ACS Catal. 2018, 8 (9), 8014–8019.​

         (19) Chakraborty, S.; Das, U. K.; Ben-David, Y.; Milstein, D. Manganese Catalyzed α-Olefination of Nitriles by Primary

                  Alcohols.  J. Am. Chem. Soc. 2017, 139 (34), 11710–11713. ​

         (18) Bauer, J. O.; Chakraborty, S.; Milstein, D. Manganese-Catalyzed Direct Deoxygenation of Primary Alcohols.

                  ACS Catal. 2017, 7 (7), 4462–4466. 

         (17) Chakraborty, S.; Milstein, D. Selective Hydrogenation of Nitriles to Secondary Imines Catalyzed by an Iron Pincer

                  Complex. ACS Catal. 2017, 7 (6), 3968–3972. 

         (16) Chakraborty, S.; Gellrich, U.; Diskin-Posner, Y.; Leitus, G.; Avram, L.; Milstein, D. Manganese-Catalyzed

                  N-Formylation of  Amines by Methanol Liberating H 2 : A Catalytic and Mechanistic Study. Angew. Chem. Int. Ed.

                  2017, 129 (15), 4293–4297. ​

         (15) Chakraborty, S.; Leitus, G.; Milstein, D. Iron-Catalyzed Mild and Selective Hydrogenative Cross-Coupling of Nitriles

                  and Amines To Form Secondary Aldimines. Angew. Chem. Int. Ed. 2017, 129 (8), 2106–2110. ​

         (14) Daw, P.; Chakraborty, S.; Leitus, G.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Selective N -Formylation of

                  Amines with H 2 and CO 2 Catalyzed by Cobalt Pincer Complexes. ACS Catal2017, 7, 2500–2504. ​

         (13) Daw, P.; Chakraborty, S.; Garg, J. A.; Ben-David, Y.; Milstein, D. Direct Synthesis of Pyrroles by Dehydrogenative

                  Coupling of Diols and Amines Catalyzed by Cobalt Pincer Complexes. Angew. Chem. Int. Ed.  2016, 55, 14373–14377. ​

         (12) Rivada-Wheelaghan, O.; Chakraborty, S.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Z -Selective (Cross-)

                  Dimerization of Terminal Alkynes Catalyzed by an Iron Complex. Angew. Chem. Int. Ed. 2016, 55 , 6942–6945. ​

         (11) Chakraborty, S.; Leitus, G.; Milstein, D. Selective Hydrogenation of Nitriles to Primary Amines Catalyzed by a Novel

                  Iron Complex. Chem. Commun. 2016, 52, 1812–1815.​

         (10) Garg, J. A.; Chakraborty, S.; Ben-David, Y.; Milstein, D. Unprecedented Iron-Catalyzed Selective Hydrogenation of

                  Activated Amides to Amines and Alcohols. Chem. Commun. 2016, 52, 5285–5288. ​

         (09) Chakraborty, S.; Kunjanpillai, R.; Blacque, O.; Berke, H. Ullmann‐Type and Related Redox Reactions of Nitrosyl

                  Molybdenum Complexes Bearing a Large‐Bite‐Angle Diphosphine. Eur. J. Inorg. Chem. 2016, 2016 (1), 103–110.

         (08) Mukherjee, A.; Srimani, D.; Chakraborty, S.; Ben-David, Y.; Milstein, D. Selective Hydrogenation of Nitriles to

                  Primary Amines Catalyzed by a Cobalt Pincer Complex. J. Am. Chem. Soc. 2015, 137 , 8888–8891. ​

         (07) Chakraborty, S.; Blacque, O.; Berke, H. Ligand Assisted Carbon Dioxide Activation and Hydrogenation Using

                  Molybdenum and Tungsten Amides. Dalton Trans. 2015, 44, 6560–6570. ​

         (06) Chakraborty, S.; Blacque, O.; Fox, T.; Berke, H. Trisphosphine-Chelate-Substituted Molybdenum and Tungsten

                  Nitrosyl Hydrides as Highly Active Catalysts for Olefin Hydrogenations. Chem. - Eur. J.  2014, 20, 12641–12654. ​

         (05) Chakraborty, S.; Blacque, O.; Fox, T.; Berke, H. Hydrogenation of Imines Catalyzed by Trisphosphine-Substituted

                  Molybdenum and Tungsten Nitrosyl Hydrides and Co-Catalytic Acid. Chem. Asian J. 2014, 9 (10), 2896–2907. ​

         (04) Chakraborty, S.; Berke, H. Homogeneous Hydrogenation of Nitriles Catalyzed by Molybdenum and Tungsten Amides.

                  ACS Catal. 2014, 4 (7), 2191–2194.

         (03) Chakraborty, S.; Blacque, O.; Fox, T.; Berke, H. Highly Active, Low-Valence Molybdenum- and Tungsten-Amide

                  Catalysts for Bifunctional Imine-Hydrogenation Reactions. Chem. - Asian J.  2014, 9 , 328–337.  ​

         (02) Chakraborty, S.; Blacque, O.; Fox, T.; Berke, H. Highly Efficient Large Bite Angle Diphosphine Substituted

                  Molybdenum Catalyst for Hydrosilylation. ACS Catal. 2013, 3, 2208–2217.​​

          (01) Jana, R.; Chakraborty, S.; Blacque, O.; Berke, H. Manganese and Rhenium Formyl Complexes of Diphosphanylborane

                  Ligands: Stabilization of the Formyl Unit from Intramolecular B–O Bond Formation. Eur. J. Inorg. Chem

                  2013 (26), 4574–4584. ​

 

         (01) “Manganese based complexes and uses thereof for homogeneous catalysis”, Milstein, David; Vogt, Matthias; Mukherjee, Arup;

                  Espinosa-Jalapa, Noel Angel; Chakraborty, Subrata; Nerush, Alex, PCT Int. Appl. (2017), WO 2017137984 A1 20170817.​​

 

 

         (01) “Coexistence of Lewis Acid and Base Functions: A Generalized View of the Frustrated Lewis Pair Concept with Novel

                  Implications for Reactivity”. Heinz Berke*, Yanfeng Jiang, Xianghua Yang, Chungfang Jiang, Subrata Chakraborty,

                  Anne. Landwehr, Top Curr Chem. 2013, 334: 27–58.

Patent Application

Book Chapter

Mailing Address

Chakraborty Research Laboratory

office 303,Department of Chemistry

Indian Institute of Technology.

NH 65, Nagaur Road, Karwar,

Jodhpur-342037

email: subrata@iitj.ac.in

Phone: 0291 280 1313

bottom of page